Scheme I

(4), $\mathrm{H}(7) ; \mathrm{H}(6), \mathrm{H}(3) ; \mathrm{C}(5)-\mathrm{OH}, \mathrm{H}_{\mathrm{Me}}$; and $\left.\mathrm{H}_{\mathrm{Me}(6)}, \mathrm{R}^{\prime}\right]$ and one $1,6-\mathrm{H}, \mathrm{O}$ interaction $\left[\mathrm{H}(4), \mathrm{O}(9)_{\mathrm{ax}}\right]$ is unlikely to be involved. Since $7 \mathbf{a}$ is destabilized by one additional gauche (1,6) interaction

$\left(\mathrm{H}_{\text {Me(4) }}, \mathrm{R}^{\prime}\right)$ relative to 8 a (i.e., $\Delta \mathrm{G}^{0} \approx 0.9 \mathrm{kcal} / \mathrm{mole}$), the observed 4.6:1 kinetic ratio of $5 \mathrm{a}: 4 \mathrm{a}$ is reasonable is one assumes that ΔG^{*} for the closure of each of $\mathbf{6 a - 9 a}$ is identical. Ground-state conformational arguments would then, of course, translate directly into transition-state energy differences.

For $\mathbf{3 b}(\rightarrow \mathbf{5 b} \mathbf{4} \mathbf{b}$ in 1.2:1) there is an identical number of $1,6-$ interactions in both $\mathbf{7 b}$ and $\mathbf{8 b}$. Equal population of these preclosure conformations leads to the near unity kinetic ratio.

For 3c ($\rightarrow \mathbf{5 c}: \mathbf{4 c}$ in $\geq 350: 1^{9}$) there is no viable preclosure conformation that leads to the cis lactone (i.e., both 6 c and 7 c embody 1,7 -interactions), and virtually all reaction proceeds via 8 c .

The stereochemical assignments for $\mathbf{1 - 5}$ were initially based upon extensive analysis of ${ }^{1} \mathrm{H}$ NMR data and the X-ray structure of dilactone $\mathbf{1 b} .^{2}$ Synthetic correlation to known compounds now
(9) The observed "kinetic" ratio is critically dependent upon the precise conditions (pH and length of exposure to acid) for the quench of salt 3 c . The highest observed ratio was $350: 1$ (pH 3 , rapid handling), but typical workup ($\mathrm{pH} \sim 2,5 \mathrm{~min}$ for extraction) gave ratios in the still synthetically useful range of 20-150:1. Rapid, partial equilibration presumably accounts for this variability.
supplements that evidence. Thus, oxidative decarboxylation (1.3 equiv of $\mathrm{Pb}(\mathrm{OAc})_{4}, 0.2$ equiv $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, 1.3$ equiv of py , $\mathrm{PhH}, \Delta)^{10}$ of 5 c generated a mixture of olefins $10 \mathrm{c}(\sim 1: 1)$, which

was cleaved $\left(\mathrm{NaIO}_{4}, \mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$ to provide a pair of acids from which the methyl ester of Prelog-Djerassi lactone 11^{11} could be separated (32%) after diazomethane treatment. The Kochi reaction ${ }^{10}$ of $\mathbf{5 b}$ led to isomers $\mathbf{1 0 b}$, which were reduced ($\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$) to d, l-invictolide ($\mathbf{1 2}, 59 \%$ from $\mathbf{5 b}$; 47% from $\mathbf{1 b}$), the recently isolated ${ }^{12}$ queen recognition pheromone of the red imported fire ant. Each of these syntheses confirms the trans-5,6-disubstituted valerolactone nature of $\mathbf{5}$ and constitutes a highly stereoselective four-step preparation from $\mathbf{1 b}$ or $\mathbf{1 c}$, themselves readily accessible in four pots from 3-pentanone and methyl acrylate. ${ }^{2}$

Acknowledgment. This investigation was supported by Grant 29077, awarded by the National Institute of General Medical Sciences, DHHS. Purchase of the Nicolet NT-300 WB NMR instrument was made possible through Grant NSF CHE 79-26027. We thank Drs. J. H. Tumlinson and J. R. Rocca for providing copies of high-field ${ }^{1} \mathrm{H}$ NMR spectra of invictolide.

[^0]
Additions and Corrections

The Mechanism of the Dismutation of Superoxide Catalyzed by Copper(II) Phenanthroline Complex and of the Oxidation of Copper(I) Phenanthroline Complex by Oxygen in Aqueous Solution [J. Am. Chem. Soc. 1983, 105, 7276]. Sara Goldstein and Gidon Czapski*
$E^{\circ} \mathrm{O}_{2} / \mathrm{O}_{2}{ }^{-}=-0.33 \mathrm{~V}$ which was used is defined for 1 at of O_{2}. In our calculations the value should be $E^{\circ} \mathrm{O}_{2} / \mathrm{O}_{2}^{-}=-0.16 \mathrm{~V}$ which is defined for 1 M of O_{2}.

On page 7279 in the paragraph Redox Potential of ($\mathbf{o p})_{2} \mathbf{C u}^{2+}$ the following corrections should be made: $E^{\circ}{ }_{\mathrm{O}_{2} / \mathrm{O}_{2}}$ - should be -0.16 V rather than $-0.33 \mathrm{~V} ; E^{\circ}{ }_{(\mathrm{op})_{2} \mathrm{Cu}^{2+} /(o \mathrm{op})_{2} \mathrm{Cu}^{+}}$should be 0.11 V rather than $-0.055 \mathrm{~V} ; K_{12}$ should be 1.66×10^{13} rather than 5.62×10^{15}; and k_{-12} should be $1.77 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ rather than 5.25×10^{-8} $\mathrm{M}^{-1} \mathrm{~s}^{-1}$ 。

On page 7280, 9th line in Conclusion: $E_{(o \mathrm{p})_{2} \mathrm{Cu}^{2+} /(\mathrm{op})_{2} \mathrm{Cu}^{+}}$should be 0.11 V rather than -0.055 V .

[^0]: (10) Sheldon, R. A.; Kochi, J. K. "Organic Reactions"; Wiley: New York, 1972; Vol. 19, Chapter 4.
 (11) Ireland, R. E.; Daub, J. P. J. Org. Chem. 1981, 46, 479.
 (12) Rocca, J. R.; Tumlinson, J. H.; Glancey, B. M.; Lofgren, C. S. Tetrahedron Lett. 1983, 24, 1893.

